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Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems
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We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength
functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field
with random two-body interactions of increasing strengttthe strength functiong(E) are well known to
change, in the regime where level fluctuations follow Wigner’s surmise, from Breit-Wigner to Gaussian form.
We propose an ansatz for the function describing this transition which we use to investigate the participation
ratio &, and the information entropg™® during this crossover, thereby extending the known behavior valid in
the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling
law Ag~1/Vm (m is number of fermionsfor the duality point\=\g, whereF(E), &, andS"™ in both the
weak (A=0) and strong mixing(A=cc) basis coincide. As an application, the ansatz function for strength
functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms Cel to Sml with
valence electrons changing from 4 to 8.
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. INTRODUCTION case, the size of the Hilbert spacedis(}}) and another im-

There are many physical systems which are statisticallpOrtant parameter is thefonnectivI(ygiving the number of
well described by the so-called embedded random matriirectly coupled statesk=1+m(N-m)+m(m-1)(N-m)(N

ensembles of fermions, representing particles subjected to @™~ 1/4. ) .

one-body mean-field potentialdefining a set of single- . Because of its broad relevance to mamyriori dlff.erent,.
particle level, and interacting with a random two-body po- finite q_”a”t“m systems, EGQE+2)'s have. been invest-
tential. Examples include heavy nuclgi-5], natural[6,7], gated in detail by many resgarc.h groups in the.recent past
or artificial atoms(quantum dotg[8,9], and nanometer-scale ([)ld_55e8>arla(1)p<l)|2a_t|2rlwlg N]lcfosrtn'%ZSUV\?:;En:nlés?ﬁeaggg’rt"gcaégﬁ?ag
metallli(;gralrtls[riO]. S|m|rlaiast|';]uat|(t)n§ of ;andirc:_m:y Intera(:['mlimit, and relied on numerical calculations in the regime of
1% Sp d _syfhe S ?cctu f et St 3}{ 0 Sf. 9 azs Sys te htermediate values of. Focusing on the statistical spectral
[11], an In the context of quantum information and quantum, 4 \yaye function properties, the dominant features of
computation[12]. In Some of these appllcgtmns the embed'EGOE(1+2) that emerged from those investigations can be
ded ensembles are directly used while in oth@fen in

; . summarized as:
nuclei and atomysthe forms given by the ensembles for den- (1) There is a markek,, such that fon >\, the many-

sity of states and other physical quantities are used. The emysqy |evel spacing distribution becomes close to that of the
bedded ensembles are defined as ensembles of Hamiltoniaggssian Orthogonal EnsemiBOE) of random matrices
{H}=h(1)+\{V(2)}, where{ -} denotes an ensembl(1)  [22] while for A <\, the level fluctuations are close to Pois-
=2 gn; is a fixed one-body operatgone can also consider son, Using the number of directly coupled statésit is
an ensemblefh(1)} defined by a probability distribution established thah.o1/m?N [16,17; specifically for m=6
P(e)) defined by the single-particle energigsvith average  andN=12, \,=0.06[1].

spacingA which sets the energy scalene can thus sek (2) As \ increases fromn=0, the strength functions
=1 without loss of generalily andn; is the number operator F,(E) (to be defined in Sec. Jlundergo a crossover from a
for the single-particle statg). Similarly V(2) is the random  delta-peak, first to a Breit-WignéBW), then to a Gaussian
two-body interaction with its two-particle matrix elements form. Related to that crossover, there are two marké]ré)
chosen as independent Gaussian variables with zero cenigch that, fon\(Fl)s)\g)\(FZ), the strength functions are well

and unit variance. Thus, fon fermions inN single-particle approximated by a BW forni1,3,14,15,18-2p the BW
states,{H} is a one plus two-body random matrix ensemblefOrm emerges abov)e(Fl), which is exponentially smaller im

(called embedded Gaussian orthogonal ensemble of,qN than\.. In particular, the BW form starts occurring in
(1+2)-body interaction$EGOH1+2)]) [1,2] defined by the e region where the spectral fluctuations are still Poissonian
parametersm,N, \), where) is the interaction strength. For (this is not surprising as the BW form follows even for the
convenience, we only consider here EGOE?2) for spinless  gquidistant spectrum of background std@3]). Thex > )\(FZ)
fermions, but extensions to particles with intrinsic angularregion, with GOE spectral and wave function properties, is
momentum have also been considef8dl0,13. In such a  5jled Gaussian domaii8]. From now on we IOUY\F=)\(F2)i
note that\g> A.. Arguments based on BW spreading widths
give A 1/ym [15,2Q; for the m=6 andN=12 case\g
* Author to whom correspondence should be addressed. Fax: 90.2 [3].
79-26301502; Email address: vkbkota@prl.ernet.in (3) In the Gaussian domain, the participation raRR)
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&(E) and the exponential of the information entropy given in Sec. Ill. In Sec. IV, th&,gw-g(E) is applied in the
(exgS"™(E)]) (both quantities will be defined in Sec. )Il analysis of the BW to Gaussian transition one observes as we
take Gaussian forms when plotted as a function of en&rgy go from neutral Cel atom to Sml atom. In Sec. V, the exis-
[3]. The variances of these Gaussian éte(?)/(2{%) and  tence of a duality transformation in EGQIE+2) (which was
1/¢%, respectively, where 2=c2(m)/[oZ(m)+N\20%(m)];  established in Ref[20]) is discussed and it is shown that,
on(m) is the spectrum width produced ty1) in the total  using the results for PR ar@"™ in the Gaussian domain, the
m-particle space and similarly,(m) is the width produced duality point\y~ 1/m. Conclusions and final comments are
by V(2). Also, in the BW region, the PR is given by the ratio given in Sec. VI.

of the spreading width and the spacing between dirdoyy

V(2)] connected states arg@"™ ~ In(PR) [18] (see also Ref.

[24]). Il. INTERPOLATING FUNCTION FOR BW TO GAUSSIAN

(4) There is a third markehy such that at\=\4 the TRANSITION IN STRENGTH FUNCTIONS
strength functions, PR an8"™ expressed in either thie(1)

(i.e.,\=0) and V(2) (i.e., \==) basis will coincide. Thisis ~ Given the mean-fielth(1) basis state&) and the expan-

accompanied by a duality transformation relating the valuesion of the eigenstatefE) as |E)=3 Cik), the strength

of those quantities in thi(1) basis to those in the(2) basis ~ functionsFy(E), one for eachk) state, are defined by

by )\—>)\§/)\ [20]. In Sec. V thelm,N) dependence ot will 12 , £ H

be shown to be.y~ 1/\Vm (correcting the previously postu- F(E) = E Cc [FAE-E) =(CG]Hd p"(E). (1)

lated result\q~ 1/m¥* [20]); for m=6 andN=12, as we E

shall see ahead,q=0.3. o In Eq. (1), () indicates an ensemble average:(}y) is the
It is useful to point out that chaos markers, similanto m-particle space dimension apH(E) is the normalizedand

A, and\q, which depend on different types of connectivities oo mple averagpdensity of states. As mentioned in Sec. |,
[see pointg1)—(4) above and also Sec.]Vare also found in H(E) is in general a Gaussiafoften the superscript is
many other models with interactions; see for example Re dropped

[25]. Another important result for EGQE+2) is that the

smoothed (ensemble averaggddensity of states takes a 1 E2 .

Gaussian form independent of the value\dfl,2,4,26. Our pHE) = ———exp-—; E=(E-ey(m)/oy(m),
purpose in this paper is to bring completion to the investiga- V2ma(m) 2

tions related to the point€l)<«4) above. In particular, we (2

will introduce an interpolating function for strength functions . . _
b 9 g where e,(m)=(H)™ is the spectrum centroid and similarly

for the BW to Gaussian transition and apply. It should be ) ) )
pointed out that the BW to Gaussian transition was discussed+(M) is the spectral width. The BW and Gaussiaenoted

(in the context of giant resonances in nugkiist by Lewen- By 9) forms of F(E) are,

kopf and Zelevinsky[27], although not for EGO@& +2) but 1 r

for a somewhat different random matrix model with interac- Frew(E) = —%,FK:Q(E)

tions. Also it is important to mention that the existence of the 2m(E-E)°+ /4

BW domain for nuclei, within the nuclear shell model, was 1 (E-Ep)?

discovered for the first time by Fraziet al. [28] for the S—=expm———— ., Q)

so-called(2s1d)-shell nuclei. They showed that the Gaussian
strength functions with realistic effective interactions chang _ . _ e .
to BW form as the overall strength of the interaction meltrix(-:\"v_here E"_%')H'k%‘;) W't_h 'p—f % Fk(E)C,iE’ the sprgadmg
elements is decreased considerably. In Sec. IV of the presefdth zrk:53/4‘51/ . Similarly the variance ofFy is oy
paper we will give the first atomic structure example. Now = (KIHK = ((k[H[k))2. Both the spreading widtif, of the
we will give a preview. BW anday of the Gaussian strength functions are essentially
In Sec. Il we discuss a variant of the well known Stu-independent ofk provided one considers,(E)'s with Ey
dent's t-distributior{29] [hereafter called.gy_o(E)], witha  €nergies not too far away from the center of the density of
parametery, and show that it is well suited for describing the the k) states[1,3,14. Similarly, the energie&’s (of H) and
BW to Gaussian transition. Numerical calculations allow usEx'S Will have the same centroid. Moreover, just as the state
to establish a one-to-one correspondence betweand the ~ densityp"(E), the E¢'s density, denoted by"(Ey) with the
interaction strength. In Sec. IlI, the resultingF,.gw_g(E) is ~ Meaning of the effective one-bodiyexplained below, is also
used to calculate both PR a1, and comparison is made @ Gaussian. These results are used throughout this paper and
with direct numerical calculations of these quantities as &Vithout loss of generality the centroids &fs andE,’s are
function of A, over the full range of variation of, thereby ~ Set equal to zero. As it is discussed in detai[3 p"(Ey) is
extending previous similar investigations which were re-generated byh which is h(1) plus a small additional term
stricted to either the Gaussi48] or BW [18,2Q domains. ~ arising fromV(2). Therefore the width op"(E) is essen-
Additional structures in the wave functions can be capturedially generated byh(1) and thegy’s are generated by(2).
by the structural entrop,=S"°-In &,, which measures Before proceeding further it should be mentioned that the
the amount of information contained in the tails of the strength functions are basis dependent and one can define
strength functions. Results of an analysis Qf, are also strength functions in th&(2) basis also. We will turn to this
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question when discussing the duality transformation in Sec. 5 7 1 3
V. 92F1 Eaa;g;‘ﬂz oF1 E’a;é;_nz
For the BW to Gaussian transition we make the following y,(a:a,8) = = > -3,
ansatz forF,(E): E (2’ aé._ 772)
21 ) 8y I
272
(aB)* YT (a) dE (6)
Fiew-g(E:a, B)dE = ,
k:BW- g( a B) — ( 1) [(E_Ek)2+ aﬂ]af
VTl a—E

where 77=(a/ afB), and,F, a hypergeometric function.
a=1. (4) In testing Eq.(4) and also in the applications given ahead
in Secs. IV and V we consider the average strength function,
In Eq. (4) theT'() arel'-functions. The parametetsand 3 in hereafter called=(E), obtained by averaging(E) over an
(4) are in generalk dependent and change with The interval, much smaller than the width qf tikg's spectrum,
Feaw-g in (4) gives BW fora=1 and Gaussian fow— o ar_oundEk:O (|_.e., around theEk’s. centroid. The spreading
(this can be easily checked using Stirling’s approximation Width of F(E) is denoted byl" [this should not be confused
As required, it is normalized to unity for any positive value With the I'-functions in Eq.(4)] and the variance df (E) by
of the continuous parameter For 21 an integerFgw-g - In Fig. 1@ the results of EGOR +2) for F(E) are com-
gives the so calle§tudent’s distribution[29], which is well ~ pared, for them=6, N=12 system, with the best ff,.gy-g
known in statistics. In particular, th8tudent'sdistribution  [Ed. (4) with E,=0)] for various values ok. In the fits, for
f(x) with a parametep given in Table 5.7 of29] reduces to  the cases witth=0.1 (for thesea>1.6), the g values are
(4) with the changev=(v+1)/2, v a positive integer, and  fixed using Eq(5) and theo of F(E). Similarly, the spread-
—\2vl(v+1)(E-E)/VB. Note that the construction of ing width I (B~T?/4) is used for eliminatings for the
Firew-g in EQ. (4) is similar in spirit to the Brody distribu- Specific case oh=0.06 (here «=1.2). In the fits, also im-
tion, interpolating between the Poisson and Wigner-DysorPosed is the condition that the value gf calculated from
distributions for nearest neighbor spacing distributionEd. (6) over the spectrum range should be close to the nu-
(NNSD) [2]. Also, just as some groups use for the NNSD americal EGOHKL +2) values. As it is seen from Fig. 1, the fits
linear combination of Poisson and Wigner forms multipliedare excellent over a wide range bfvalues; in the calcula-
by x and(1-x), respectively, withx being the mixing param- _tion_s onlyA=0.06 are c_on_sidere(dor the system conside_:red
eter, it is possible to usgFgw(E)+(1-u)F4(E) for the |n_F|g. 1, )\C_~ 0.Q6). Variation of the dgduced values with
BW to Gaussian transition witp, (0= x<1) being the mix- A i shown in Fig. 2. The parameterrises slowly up to\g
ing parameter. This simple form is not explored in this pape{note that\p~0.2 for the EGOEL +2) system used in Fig. 1

as it is unlikely that a theory for strength functions for [3]) and then it starts rising sharply witk. Finally the o
EGOH1+2) will give this form. values start saturating aftar>\,=0.3 (the saturation is ar-

In Feaw-o(E: a, B), the parametex is sensitive to shape tificial as the determination of for A >\, is difficult and

changes, while the parametgr supplies the energy scale here F(E) will be very closg to GgussianThe criteriaa
over whichFy.gw_g(E: a, B) extends. Since we focus on the ~ 4 andy,~1 appear to definag. Figure 2 shows that the
shape transformations; is the significant parameter. Firstly, BW to Gaussian transition is a sharp transition and therefore
it is easy to see thafgw_g(E: a, ) is an even function of studies in BW and Gaussian regimes can be carried out in-
E-E,, so that all of its finite odd cumulants vanigstrictly dependently, to a good approximation, as it is done in many
speaking, the centroid i, only for «>1; see Ref[29]).  Papers before.

: : - Now we will apply Fy.gw—g to study PR and"™ in the
The variances? of Fy.gw_g, defined only fora>3/2, is A ; kBW-g .
k2 TkBWg y fore region intermediate to BW and Gaussian forms.

i = ( )B (5)
2a-3 IIl. PARTICIPATION RATIO AND INFORMATION
ENTROPY IN THE BW TO GAUSSIAN TRANSITION
and it is useful to recall thatf~\%0%,,, independent ok REGION
[3]. Fora>3/2 one can use) to fix B while for a<3/2, it
is the spreading widtf, (this is well defined for alkr val- Two important measures of the complexity of eigenstates

ueg that is useful for fixing the3 value. There is no simple Of interacting systems are the participation ratio and informa-
expression fol', as a function ofx and 8 but using(4) this  tion entropy; see the reviews by Izrailg30] and Zelevinsky

can be calculated numerically. Just as &), the excess €t al.[31]. As in the previous section, we expand the Hamil-
parameter (also known as Kurtosjs of Fygw—g is 7> tonian eigenstates in the noninteracting mean-field basis as
=6/(2a-5) for a>5/2. However this expression is not use- |E)==k C(k). Then&(E) (i.e., PR andS™(E) are,

ful in practice; finite range of the spectrum causes large de-

viations for «=2-8. Therefore it is more usefgin fitting

Eq. (4)) to considery, Wi'Fh the spectrum r_ang_ing say from &(E) = {2 |CE|4}_1, (7a)

—a to +a. Then Eq.(4), with proper normalization gives, k
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FIG. 1. Strength functions(E) for a 20 member EGO® +2) for various values of the interaction strengttin {H}=h(1)+\{V(2)} for
a system of 6 fermions in 12 single particle states; the matrix dimension is 924. The single particle energies used in the calculations are
€=(i+1/i),i=1,2,...,13ust as in Ref[1]. In the figures-(E) is plotted agains&=(E—e)/awheree is the spectrum centroid andis the
width. The histograms are EGQE+2) results and the continuous curves are the beBifity_g(E) from Eq.(4) with E,=0. In constructing
the strength functions*;(:ﬁ2 are summed over the basis statésin the energy windoWEk:O)t& and then the ensemble averag‘e(&) VS

E is constructed as a histogram; the valuedois chosen to be 0.05 for=0.06 and beyond thid=0.1. Note thaék:(Ek— e)/o and, as
stated after Eq.3), here and in all the other calculatiorss set equal to zero. Similar results are also obtained fofrtiwe7 ,N=14) system.

So(E) = - > |CE[2In|CE[2. (7b) inf oo _ L 7 h Fu(E)
Tk K S™(E) - SEoe= — e ) dEp (Ek)Fk(E)Inm-
The subscript 2 denotes thgt is the second Rényi entropy (8b)

[32]. Qualitatively,&, counts the number dfk)}-basis states o _

necessary to construct one typi¢g}-state, and is thus often AS it is well known, the GOE values faf, and S are,
referred to as the Number of Principal ComponeiN®C) OE _ info \ _

[3,31]. Obviously, both¢, andS™™ are basis dependent, and §7°=d3, expiSgSe) =0.481. ©
could as well be defined starting from another expansionSubstituting the interpolating,.sw-g(E) for Fy(E) in Egs.
Equation(7) gives their expression with respect to th@)  (8a) and(8b), one can study;, and S™ as a function of\.
basis and consequently, and S"° give measures of the Before going further it is important to consider the correla-
spreading of eigenstates over the noninteracting basis as thien coefficient{ that characterizes these measures. &or
many-body interaction is made stronger and stronger. In SeandS"° in h(1) (A=0) basis,{= ¢,. Given the dimension,

V, we will deal with these measures defined with respect tdasis statesk) and theE, energies for an particle system,
the V(2) basis. As discussed in detail in R€8], for A>\.,  (£I")2 is defined by(see[3]),

one can write£, and S™ in terms of the strength functions
Fk(E), ao(m)

o4(m)’

(L") =
{&(E)E05 = TlE)]z J dE"(EQIF(E)?,

P Am =S (- €% e=dID E,
(8a) K K
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FIG. 2. ForAn=0.08,a vs \ obtained by fitting thé=(E) in h(1) A
basis to the interpolating forrf.gw-g given by Eq.(4) with E,
=0. Results are shown for the EGQAE-2) system used in Fig. 1. FIG. 3. Square of the correlation coefficiety vs \ for the

The filled circles give the best fit values and the continuous curve, EGOH1+2) system used in Fig. 1. Theoretical resyltsntinuous
given by a=24/[exp—(40(\ —\p)) + 1]+2 with A\y=0.29, guides the  curve) given by Egs(11) and(12) are compared with the numerical
eye. It is curious to note that, is close to\g, the duality point EGOH1+2) results(open circles

discussed in Sec. V. Similar results are also obtained for(ithe

=7,N=14) system. using Eq.(5) to eliminates and simplifying all the variances
that enter into Eqs(8a) and (8b) to {2 using Eq.(11), it is

oﬁ(m) =dtS KKIHIK')? + a%(m). (10) seen thgt the integrals if8a) and (8b) will reduce to inte-
KK grals with no other parameters exceptand {. Now the

_ o _ integral in Eq.(8a for & can be further simplified for

In practice, a good approximation to E40) is E=0[for otherE’s one has to numerically evaluate the inte-
o2(m gral in Eq.(8a)] and this givegfor a>3/2),
(&M% = ™) (12)

2 + 2 2 .
op(m) + Noy(m) £,(E= O)/§§OE
Equation(11) is obtained by recognizing tha% will be very 5
close too? and ¢ is essentiallyo?+\%02 (note thato? |2 "(a) 1 U(} 3
=\20%). In fact these results are valid in the dilute linfin (2a-3) 2( 1\VEa-2 \2'2
—o,N—o, m/N—0) and hereh and V are orthogonal. Ia-3
Even away from the dilute limit they remain to be good

-1
approximations(see Fig. 3 ahead for a testPropagation -2 (2a-3)(1 _gz)) (14)
formulas[1] for o(m) and o(m) are ' 20 '
m(N-m
O'ﬁ(m) = ﬁoﬁ(l) = f2A2, (129
where U(——-) is hypergeometric-U functioj33]. For «

) m(m—1)(N=m)(N=m=- 1)N(N — 1) \2 =<3/2 a compact formula could not be derived but one can

Nog(m) = N-2(N-3) i 9N, use(8a) for numerical evaluations. Similarly, in the case of

S"(E=0) a simple formula like Eq(14) could not be ob-
(12b) tained for anya but once again here one can u&b) for
numerical evaluations. In the limit— o, Eqs.(8a) and(8b)
can be simplified, for an¥, to give the Gaussian limit for-
mulas derived i3],

It is possible to writeozh(l), appearing in12a), in terms of
A? and for example for a uniform single particle spectrum,

AZ
oﬁ(l):(N+1)(N—1)1—2. (13)

22
OE_ [T~ ey _ L
The f andg in (123 and(12b), respectively, defined by the 52(E)/§§ =1 g“exp( 1 +§z)= (153
second equalities in these equations, are used in Sec. V. As
shown in Fig. 3, for then=6,N=12 system, results of the

formulas (11) and (12) agree very well with numerical . . 2 gzéz

EGOH1+2) values[obtained via(10)] for . exd S"(E) - S0 = V1 - gZeXp(—)ex -
SubstitutingF.gw-¢(E) for F((E) in Egs. (88 and (8b), 2 2

assuming that the parametersand 8 to be k independent, (15b)
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0 0 0.1 0.2 0.3 0.4 FIG. 5. Structural entrops,(E=0) vs A for the EGOE1+2)
system used in Fig. 1. Theoretical results calculated using(Bgs.
A (8b), and (4) (open squargsare compared with the EGQE+2)

results(filled circleg. For comparison, the Gaussian domain result
(dashed curvefrom (17) is also shown. For guiding the eye, the
filled circles are joined by continuous lines. See text for further

FIG. 4. Participation ratio &,(E=0)/¢5°F vs N for the
EGOH1+2) system used in Fig. 1. Theoretical results given by Eq.
(14) (open squargsare compared with the EGQE+2) results

(filled circles. For comparison, the Gaussian domain re@ashed details.
curve) from Eq. (159 is also shown.
1F“a In(1+é) {2a+ sin Za]
SWE=0=— de +1In
In Fig. 4, the&,(E=0) results, from(14) for »=0.08 and T)ana 1€ ™
from (83 for N=0.06, are compared with numerical + 1/ 2a
EGOH1+2) calculations for them=6,N=12 system. The | {—}(;— ) (16)
m

agreement between theory and numerical calculations is

good upto)\~Q.06. In tgese ca!culations th&_value.s are |n (16), a=arctari2B/I") where B is the m-particle spec-
read off from Fig. 2 and* from Fig. 3. Comparing with the  yym span and =\2 is the BW spreading width. Equation
Gaussian domain results given (539, it is seen th'at they (16) gives the upper limit fo&(0) to be In 2~0.7) and this
are good forA > \¢ as expected; these results again confirmggiows by lettingB/T — o (thena— /2). Similarly in the

that\g~0.2 for them=6 ,N=12 system. FOK <\, as here 55 ssian domain, usind5a and(15b), one has
the BW structure is more dominant, there will be more lo-

calization and hencé, decreases fast asis decreasing and SW{(E=0)=In(1.44 + %[gZ -In(1+2)]. (17)
this is seen in Fig. 4. Finally, will approach zero forn
—0. The results based aBa) will not extend to the region It should be noted the85°F=In(1.44 independent oE. An
A=\. as here the GOE assumptions used in deriving thesgteresting observatio(though its significance is not clear
equations(see[3]) will fail. Finally, for S"™(E=0) the re- s that forx=0 (then7=1) the S is sum ofSS°F and S, for
sults obtained usingBb) are similar to those shown in Fig. 4. a Gaussian function; as shown[82], for a Gaussian func-
This is not surprising as in many numerical calculatigns tion ss":%(l-m 2). Equation(17) shows that, ag=0 for
cluding the present calculationst is seen thatS"°(E) \— %, S approaches the GOE val(@.3689 for very large
~In(&(E)) and therefore only their difference can capture). Except for the formulagl6) and(17), which are derived
the information not contained in the bulk 8f" or PR. With in the two limiting situations, no analytical results could be
this clue, recently it is arguei@?] that the structural entropy derived using the interpolating fortd). However, numerical
Si(E)=S"(E) - In[£,(E)] is an important measure of com- calculations give some insight. Figure 5 shows EGDE
plexity [in addition to S"™(E) or &(E)] in eigenfunctions.  +2) results for then=6,N=12 system foiSy,(E=0) vs \ in
More importantlySy;, is free of divergences associated with theh(1) basis and their comparison with the results fr@a)
§" and PR. For example, e¢®") andé, for GOE, as seen  and (8b), whereFgw-g given by (4) is used witha and {
from Eq. (9), diverge as the matrix dimensiah— . For  values taken from Figs. 2 and 3, respectively. Bygis well
interacting particle systems it is observed tBg{E=0) vs\  described fom =0.1. Comparing with Eqg16) and(17), it
(or the disorder in the Anderson mod@&P]) exhibits a peak. is seen that the Gaussian domain form(il@ describes the
It is then of interest to examing, in terms of the results results forh =\ while the BW resul{16) describes only the
given in Sec. II. trends forA between 0.1 andlg [note that Eq(16) gives the
For small\, one can estimatg;, in the BW domain using maximum possible value fog, to be 0.7. More impor-
(|CHA=Fraw(E)An, whereA, gives the many-body level tantly, as seen from Fig. 5 and also from Fig. 4[6], Sy,
spacing. Inserting this into Eqé7a) and(7b) and replacing exhibits a peak aroundavalue not far from\, marker and
the sums by integrals ovéd, one gets folE=0, here the level fluctuations will have a Poisson component.
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Thus it is plausible that the peak arises due to large spectral TABLE I. Details of the angular momentum, the reference con-

(and strengthfluctuations. A good theory fo&;, generating figuration considered, and the number of CSFs generated for each

the observed peak is at present not available. of the atoms. The numbers within parentheses are the number of
CSFs chosen for the final calculations.

IV. BW TO GAUSSIAN TRANSITION IN NEUTRAL

ATOMS Cel TO Sml Element JP Ref. Config. Number of CSFs
Atoms along the lanthanide period are expected to exhibit® 4 4f5d6s” 373(308
BW to Gaussian transition in strength functions as the numPr 9/Z 4£%s” 1378(1278
berm of active valence electrons increases. It is known fromNd 4 4t%6s? 2200(2000
the analysis of Cel by Flambauet al. [6] and Prl by Cum- Pm 9/2 415652 4378(4179
mingset al. [34] that theF(E) of these atoms with 4 and 5 g 4 45652 7325(6500

valance electrons, respectively, are close to BW while those
of Sml with 8 valance electrons, as showr{ T, are close to
Gaussian. In between are the atoms NdI and Pml with 6 and Figure 6 shows that thE, gw-¢(E) (Eq. (4) with E,=0)
7 valence electrons, respectively. It is useful to recall here thgives excellent description of the calculafe)’s. In apply-
relation N\pec 1/ym and this shows that with fixe#l, there ing Eq.(4), B is eliminated using Eq5) and then the best fit
will be BW to Gaussian transition as is increasing. In 4 values are deduced. The BW to Gaussian transition is
order to verify this transition and thus provide a first realisticclearly seen in Fig. 6 witlx changing from 1.85 to 14 as we
(atomic structurgapplication of Eq(4), we have calculated go from Cel to Sml. The calculateg, values are also con-
the strength function§(E) for all the five atoms using the sjstent with this transition as they change from 6.44 to 0.46.
same method. Before turning to the results, first the methodomparing with Fig. 1, Cel and Prl atoms are close\to
used in atomic structure calculations is briefly discussed. ~0.1-0.15 casefF(E) is close to BW, Ndl and Pml are
The ground state configurations of Ce, Pr, Nd, Pm, an@jose tox ~0.2—0.25 casels™(E) is intermediate to BW and
Sm are 45d65°('G,), 4f%65(Ylgp), 41%65°(),  Gaussiahand Sml is close ta~0.3 casgF(E) is close to
4f%6%(°Hs)), and 4°6s°("F), respectively. Coupling of the - Gaussiahof them=6,N=12 EGOE example. Thus NdI and
high angular momentumcsand 4 electrons produce several pm| (calculations for these atoms are reported for the first
configurations w_ith strong configuration mi.xing. Erevioustime in this paperhaveF(E) intermediate to BW and Gauss-
work on lanthanide serieg35] and Sm I[36] in particular  jan forms. For further confirming the BW to Gaussian tran-
established that an appropriate method to calculate atomigtion, &,(E=0)/ ¢S°F values are calculated using E(L4)
orbitals is the multiconfiguration Dirac-Fock method 4nq theq values given in Fig. used also are the calculated
(MCDF). Details of this method and its implementation are ;s yaluey. They change from 0.21 to 0.6 for Cel to Sml and
des_cribed if37,38. In the present study,.for a given atom, a they are close t@Z(E:O)lggo'E’s generated by the calculated
series of MCDF calculations are carried out to generaigyomic eigenstates. However there are large fluctuations in
single electron basis set consisting (4-6)s,5 (2-6P1a  £,(E), as the atomic calculations produce in general, for
(2=6)P3yz, (3= 4f5), and 47, orbitals. Then the basic 1any states, more localization than expected from EQOE
many-electron wave-functions, called the configuration statqz); if we averaget,(E) in the neighborhood oE=0, then

functions (CSF§ |%PJIM), whereP, J, a}nd M are panty, o calculated values are20% —30% smaller than the val-
total angular momentum, and ”.“?‘gne“c quantum nurnberﬁes given by Eq(14). This is already seen in Ce | and Prl in
respectively a_ndyk are the addltlonal_ quantum numbers 4] and Sml in[7]. The present calculations confirm this to
needed to define each of the CSFs uniquely, are construct a generic behavior. Modifications of EGQE 2) for in-
for a givenJ andP. The CFS’s basis in the present calcula-

. . . o rating this property need to be studied but this is for
tions consists of single and double excitations from a referE:Orpo g broperty

. . future. Here it suffices to conclude that, from the results in
ence configuration f45dm6§2 to 5d, 6p, and 4 .shells, where . Fig. 6, Cel to Sml exhibit BW to Gaussian transitiorA(E).
| andm are the occupancies of the shells. Finally, the atomic

(Dirac-Coulomb Hamiltonian is diagonalized in the CSF’s
space of specifid and P. This sequence of calculations is
repeated for each of the five atoms. Details)df the refer-
ence configuration considered and the number of CSFs gen-
erated for each atom are given in Table I. Note that the parity For the HamiltonianH=h(1)+\V(2) two asymptotic

(P) is chosen to be same as that of the ground stateJdod natural basis emerge, the=0 basis defined bj and thex

be 4 for even and 9/2 for odd cases. For the analysis of« basis defined by. The discussions in Secs. Il and Il are
strength functions, we choose the CSBwy are the basis concerned with strength functions, PR a8#° in the \=0
statesk) in Sec. 1)) which have close to uniform separation. basis only. Here we will extend this discussion to Nvwex

For example, in Sm only 6500 of the 7325 CSFs generatetlasis and focus on the existence of a duality transformation
are considered, the first 200 and last 625 CSFs are excludeldetween the two basis. Recently Jacquod and Vadya
Then, the strength functiorfS(E) averaged over 3% of the [20] showed that aluality point A4 exists where all the sta-
E,’s around their center are constructed for Cel to Sml andistical wave function properties in these two basis coincide,
compared with Eq(4). and that the wave function properties in the noninteracting

V. DUALITY BETWEEN WEAK AND STRONG MIXING
LIMITS
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0.05 N r » '\‘. 4 r /./ ]
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g [/ N r ;/ \-;7
= 0101 . o Lol Lol b e
5 ] 3 -2 -10 1 2 3 3-2-120 1 2 3
o) ] )/
5 o0sf . (E-&)/o
& o.00k FIG. 7. expS™(E)-S29] in V(2) basis(filled circles for four
‘ = - different X values for the EGOR +2) system used in Fig. 1. The
0.10E . continuous curves are from EQL5b) with {=¢...
0.08 | — - : . L :
] by similar ones in the Gaussian approximation, but first let us
0.06¢ E recall the JV results.
0.04L 3 In the noninteractingA=0) basis, the spreading width
o.02F E I'® of F(E) can be estimated using the Golden Rule. For
' ] this, first one has to realize that there are, besides the one-
000k ] body spacing\, two important energy scal¢46]: the mean
- ] spacing between states directly coupled by the two-body in-
‘ ] teractionA'”=BY /K ~ 4A/Nn? and the average spacing be-
0.06 ] tween them-pamcle states\ ?=B?/d, whereB” = | mNA
] is the m-particle spectrum Wldth fon—0 [note thatB
0.04r E ~ op,(m) with o,(m) given by (1238 and(13)]. This estimate
0.02L ] slightly differs from that of JV where thBﬁg) was approxi-
0.00 | | | | 1 mated by them particle spectrum span. Then, the golden rule
e . . . S PR givesT©@ o \2/AY ~ \2Nr?/A. With this, in the dilute limit

(E_S)/a (m<N), the PR in the \=0 basis is &’=T"/A?
o \2m®?d/ A?. This result differs from the JV estimate g|ven
FIG. 6. Strength functions(E) for Cel to Sml. Histograms are in [20] by the factom®? instead ofm. As is the case foF©
calculated strength functions and the smooth curves are the best flte Golden Rule also gives a good estimate for the \/\]I&‘fh
Frew-g(E) with E,=0. Also given in the figures are the calculated of the F(E) expressed in th& =« basis. Following JV, it is
71 (skewnespand y, (excesg values and the deduced values, from geen thai® W)Nm(N m)AZ/\ and the PR in tha& =« basis

the best fits, ofx characterizingm,.gw-g(E) with E,=0. In the fig- gm)_r(w JA x(A/)\)Zd The duality point is defined by
ure, € and o are the spectral centroids and widths. See text for )
the conditioné, )\d)—éz (Ag) and therefore,

further details.

Ag = A/m*, (18)
(A=0) basis are related to those in the (fully interact-
ing) basis by the duality transformation—\3/\. An ambi-  This result[39] is in better agreement with the numerical
guity in JV results lied with the fact that the existence anddata presented by JV. They found thgf~1/m” with »
scaling of the duality poinkhy were derived within the BW  <[0.3,0.5 (one has to keep in mind that most data are not in
approximation forF(E), while Ny explicitly lies outside the the dilute limit and that is extracted from a restricted range
BW regime. We therefore extend those theoretical argumentsf variation ofm). The previous JV estimate Mo A/mt/4.
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m=6,N=12
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- 1 009 go .
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0.15 2=0.8 - r B8 A05 ]
: ot Toos . :
01 = - .
r ] C R ]
g = g - 0.03 C g " ]
= 005 - 7 C I ] FIG. 8. Strength function&(E) in the h(1)
g C FAN ] B ; % ] and V(2) basis for four\ values related by the
= 0 - S : 0 e duality transformation\ —\3/\. Results are for
< the EGOE1+2) system used in Fig. 1. Heney
2 ———r——1——— 0.08 —_———————— =0.29. Similar results for the BW spreading
o r P y - . widths are given in Ref.[20] for several
& 0.06 C ;O% - ] L P ybase EGOH1+2) systems witth(1) also chosen to be
L £ 029 | r é;) ' a0 random.
- . » | 0.04 . Oi —
m V(2) basis
0.04 - 5 @ sv(2)basis — r > 50 2=0.2
L g [ A=0.29 i L L] .o 4
= o o} 4 L e o B
i ; R 1002 - . H -
0.02 - - 40 * . ]
i 7 ] 3 Y
L i r f L] b
i _j K—_& i i t |
0 IR— TR R B R R Mmooy —_ 0
-4 -2 0 2 4 -4 -2 0 2 4
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As stated in the beginning of this sectioy lies in the Ag ~ A/(Bm)Y2, (22)

Gaussian domain, i.exg> \g. Therefore we will now derive

an estimate fony using PR and3"™ in this region. In the Thus the Gaussian domain arguments gimM@n Ay~ 1/m”)

Gaussian domain, just as Eq459 and (15b) describe PR  to be 0.5 unlike the improved BW domain arguments which

andS"°, respectively, in théa(1) basis by substituting, for ~ gave 0.375[see Eq.(18)]. With A4 defined, a much more

{ where significant result that follows from Eq$19)—(21) is {..(\)
:§o(>\§/)\) and thus there is a duality in EGQE*2), i.e., the

Lo(N) = o o2+ 22 = \(FPAD)/(f2A2+ g2\D), (19) resu]ts inh(1) andV_(2) basig are related to each other by the

duality transformatior\ —\§/\. As stated before, the same

it is expectedby extending in a straight forward manner the fransformation is also derived by JV but usifigand &, in
arguments in Ref[3] whereh(1) basis is considergdhat in the BW domain and this points-out to the general validity of

the V(2) basis also the PR ar@™ will be given by (153 the duality transformation. Strictly speaking does not lie
and (15b) but with ¢=Z, where in the BW domain nor deep into the Gaussian domain. The

duality transformation is well tested in Fig. 8 fBfE) and in
, Fig. 9 for S"°(E). In these calculationsy=0.29. It should be
— [ 232 2 [(2y2Y/(f2A2 4 +2) 2 d
L=(M) =hoylNap + Moy = V(GA)/(FPAT+ g% (20) recognized that for th&(E) in Fig. 8, the variances ar&
. ! and/2 in theh(1) andV(2) basis, respectively. In the case of
The factorsf? and g* in Egs.(19) and (20) are defined by S"©(E) one seesgfrom Fig. 9 departures, foF(E) close to
Eqs.(_12) and(13). I_n Fig. 7itis Ve.”f'ed that Eqe15b) with Gaussian, in the region well away from the centroideaind
é;fgfé)”dﬁed.desg”bis tTe t”e‘jj”lﬁf'c"’?{ I_EG((fDEf) resultsthfo: th this could be because the tails B{E) display exponential
(). Having dem Df?, ra IS, IL1S €easlly seen tha eIocalization[15,28,4(}. These disagreements are not seen in
obvious condition foS. .and PR[alsoF(E)] to be same in [20] as in this work onlyS"°(E=0) and&,(E=0) are studied.
bothh(1) andV(2) basis is It is useful to point-out that there appears to be a close rela-
) tionship betweeny and thermodynamics of finite quantum
{o(hg) = L(Ng) O Ng=[AT/g|, £*(A\g)=0.5. (21  systems. Using the Gaussian domain formgées Ref[21])
for the thermodynamic, information and single particle en-
Using Fig. 3 and the conditiof?(\y)=0.5 gives for them tropies, it is easily verified that at and arouxg all the three
=6,N=12 example\4=0.29. In the dilute limit, then de-  entropies will be very close to each other; numerical verifi-
pendence ol follows from Egs.(12), (13), and(21), cation of this result is given in Ref21]. Therefore it is
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possible to define the region aroung as the “thermody- ~1/Vm where m is number of fermions. Applications of

namic region” for interacting particle systems as here differthese results are given for the BW to Gaussian transition in
ent definitions of thermodynamic quantities like entropy will the series of neutral atoms Cel, Prl, NdI, Pml, and Sml. As
give same results; see Ref&1,41]. for EGOH1+2), what remains is a rigorous analytical treat-
ment of this random matrix model. This will give for ex-
ample a theory for vs \ (see Fig. 2, a theory forS"° and
PR in theA <\, domain etc. Finally it is important to be
In this paper an attempt is made to bring completion toreminded that only recently rigorous analytical treatment has
the analyticalin BW and Gaussian domainand numerical started becoming available for the simpler EG@H26].
investigations, initiated by a number of research groups, of
EGOH1+2) random matrix model for finite interacting
guantum systems. Towards this end, a function describing Thanks are due to Ph. Jacquod for a careful reading of the
the BW to Gaussian transition in strength functions is iden4irst draft of the paper and for making many suggestions for
tified [EqQ. (4)] and it is used to study participation ratio and improving it. The present work was initiated as a result of the
information and structural entropy as a function of the inter-correspondence one of the authgvK.B.K.) have had with
action strength. Also it is shown, using Gaussian domairPh. Jacquod. Thanks are also due to Imre Varga for corre-
results, that the duality poinky behaves more likeng spondence in the initial stages of this work.

VI. CONCLUSIONS
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