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We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength
functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field
with random two-body interactions of increasing strengthl, the strength functionsFksEd are well known to
change, in the regime where level fluctuations follow Wigner’s surmise, from Breit-Wigner to Gaussian form.
We propose an ansatz for the function describing this transition which we use to investigate the participation
ratio j2 and the information entropySinfo during this crossover, thereby extending the known behavior valid in
the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling
law ld,1/Îm (m is number of fermions) for the duality pointl=ld, whereFksEd, j2, andSinfo in both the
weak sl=0d and strong mixingsl=`d basis coincide. As an application, the ansatz function for strength
functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with
valence electrons changing from 4 to 8.
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I. INTRODUCTION

There are many physical systems which are statistically
well described by the so-called embedded random matrix
ensembles of fermions, representing particles subjected to a
one-body mean-field potential(defining a set of single-
particle levels), and interacting with a random two-body po-
tential. Examples include heavy nuclei[1–5], natural[6,7],
or artificial atoms(quantum dots) [8,9], and nanometer-scale
metallic grains[10]. Similar situations of randomly interact-
ing spin systems occur in the study of spin-glass systems
[11], and in the context of quantum information and quantum
computation[12]. In some of these applications the embed-
ded ensembles are directly used while in others(often in
nuclei and atoms) the forms given by the ensembles for den-
sity of states and other physical quantities are used. The em-
bedded ensembles are defined as ensembles of Hamiltonians
hHj=hs1d+lhVs2dj, where h¯j denotes an ensemble,hs1d
=oi eini is a fixed one-body operator(one can also consider
an ensemblehhs1dj defined by a probability distribution
Pseid) defined by the single-particle energiesei with average
spacingD which sets the energy scale(one can thus setD
=1 without loss of generality), andni is the number operator
for the single-particle stateuil. Similarly Vs2d is the random
two-body interaction with its two-particle matrix elements
chosen as independent Gaussian variables with zero center
and unit variance. Thus, form fermions inN single-particle
states,hHj is a one plus two-body random matrix ensemble
scalled embedded Gaussian orthogonal ensemble of
s1+2d-body interactionsfEGOEs1+2dgd [1,2] defined by the
parameterssm,N,ld, wherel is the interaction strength. For
convenience, we only consider here EGOEs1+2d for spinless
fermions, but extensions to particles with intrinsic angular
momentum have also been considered[8,10,13]. In such a

case, the size of the Hilbert space isd= s N
m

d and another im-
portant parameter is the connectivityK giving the number of
directly coupled states;K=1+msN−md+msm−1dsN−mdsN
−m−1d /4.

Because of its broad relevance to many,a priori different,
finite quantum systems, EGOEs1+2d’s have been investi-
gated in detail by many research groups in the recent past
[1–5,8–10,12–21]. Most investigations used analytical meth-
ods extrapolating from the weak and the strong coupling
limit, and relied on numerical calculations in the regime of
intermediate values ofl. Focusing on the statistical spectral
and wave function properties, the dominant features of
EGOEs1+2d that emerged from those investigations can be
summarized as:

(1) There is a markerlc, such that forl.lc the many-
body level spacing distribution becomes close to that of the
Gaussian Orthogonal Ensemble(GOE) of random matrices
[22], while for l,lc the level fluctuations are close to Pois-
son. Using the number of directly coupled statesK, it is
established thatlc~1/m2N [16,17]; specifically for m=6
andN=12, lc.0.06 [1].

(2) As l increases froml=0, the strength functions
FksEd (to be defined in Sec. II) undergo a crossover from a
delta-peak, first to a Breit-WignersBWd, then to a Gaussian
form. Related to that crossover, there are two markerslF

s1,2d

such that, forlF
s1dølølF

s2d, the strength functions are well
approximated by a BW form[1,3,14,15,18–20]; the BW
form emerges abovelF

s1d, which is exponentially smaller inm
andN thanlc. In particular, the BW form starts occurring in
the region where the spectral fluctuations are still Poissonian
(this is not surprising as the BW form follows even for the
equidistant spectrum of background states[23]). Thel.lF

s2d

region, with GOE spectral and wave function properties, is
called Gaussian domain[3]. From now on we putlF=lF

s2d;
note thatlF@lc. Arguments based on BW spreading widths
give lF~1/Îm [15,20]; for the m=6 and N=12 case,lF
.0.2 [3].

(3) In the Gaussian domain, the participation ratiosPRd
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j2sEd and the exponential of the information entropy
sexpfSinfosEdgd (both quantities will be defined in Sec. III)
take Gaussian forms when plotted as a function of energyE
[3]. The variances of these Gaussian ares1+z2d / s2z2d and
1/z2, respectively, where z2=sh

2smd / fsh
2smd+l2sV

2smdg;
shsmd is the spectrum width produced byhs1d in the total
m-particle space and similarlysVsmd is the width produced
by Vs2d. Also, in the BW region, the PR is given by the ratio
of the spreading width and the spacing between directly[by
Vs2d] connected states andSinfo, lnsPRd [18] (see also Ref.
[24]).

(4) There is a third markerld such that atl=ld the
strength functions, PR andSinfo expressed in either thehs1d
(i.e., l=0) andVs2d (i.e., l=`) basis will coincide. This is
accompanied by a duality transformation relating the values
of those quantities in thehs1d basis to those in theVs2d basis
by l→ld

2/l [20]. In Sec. V thesm,Nd dependence ofld will
be shown to beld,1/Îm (correcting the previously postu-
lated resultld,1/m1/4 [20]); for m=6 and N=12, as we
shall see ahead,ld.0.3.

It is useful to point out that chaos markers, similar tolc,
lF, andld, which depend on different types of connectivities
[see points(1)–(4) above and also Sec. V], are also found in
many other models with interactions; see for example Ref.
[25]. Another important result for EGOEs1+2d is that the
smoothed(ensemble averaged) density of states takes a
Gaussian form independent of the value ofl [1,2,4,26]. Our
purpose in this paper is to bring completion to the investiga-
tions related to the points(1)–(4) above. In particular, we
will introduce an interpolating function for strength functions
for the BW to Gaussian transition and apply. It should be
pointed out that the BW to Gaussian transition was discussed
(in the context of giant resonances in nuclei) first by Lewen-
kopf and Zelevinsky[27], although not for EGOEs1+2d but
for a somewhat different random matrix model with interac-
tions. Also it is important to mention that the existence of the
BW domain for nuclei, within the nuclear shell model, was
discovered for the first time by Frazieret al. [28] for the
so-calleds2s1dd-shell nuclei. They showed that the Gaussian
strength functions with realistic effective interactions change
to BW form as the overall strength of the interaction matrix
elements is decreased considerably. In Sec. IV of the present
paper we will give the first atomic structure example. Now
we will give a preview.

In Sec. II we discuss a variant of the well known Stu-
dent’s t-distribution[29] [hereafter calledFk:BW−GsEd], with a
parametera, and show that it is well suited for describing the
BW to Gaussian transition. Numerical calculations allow us
to establish a one-to-one correspondence betweena and the
interaction strengthl. In Sec. III, the resultingFk:BW−GsEd is
used to calculate both PR andSinfo, and comparison is made
with direct numerical calculations of these quantities as a
function of l, over the full range of variation ofl, thereby
extending previous similar investigations which were re-
stricted to either the Gaussian[3] or BW [18,20] domains.
Additional structures in the wave functions can be captured
by the structural entropySstr;Sinfo− ln j2, which measures
the amount of information contained in the tails of the
strength functions. Results of an analysis ofSstr are also

given in Sec. III. In Sec. IV, theFk:BW−GsEd is applied in the
analysis of the BW to Gaussian transition one observes as we
go from neutral CeI atom to SmI atom. In Sec. V, the exis-
tence of a duality transformation in EGOEs1+2d (which was
established in Ref.[20]) is discussed and it is shown that,
using the results for PR andSinfo in the Gaussian domain, the
duality pointld,1/Îm. Conclusions and final comments are
given in Sec. VI.

II. INTERPOLATING FUNCTION FOR BW TO GAUSSIAN
TRANSITION IN STRENGTH FUNCTIONS

Given the mean-fieldhs1d basis statesukl and the expan-
sion of the eigenstatesuEl as uEl=ok Ck

Eukl, the strength
functionsFksEd, one for eachukl state, are defined by

FksEd = o
E8

uCk
E8u2dsE − E8d = kuCk

Eu2lsd rHsEdd. s1d

In Eq. (1), k¯l indicates an ensemble average,d= s N
m

d is the
m-particle space dimension andrHsEd is the normalized(and
ensemble averaged) density of states. As mentioned in Sec. I,
rHsEd is in general a Gaussian(often the superscriptH is
dropped),

rHsEd =
1

Î2psHsmd
exp −

Ê2

2
; Ê = sE − eHsmdd/sHsmd,

s2d

where eHsmd=kHlm is the spectrum centroid and similarly
sHsmd is the spectral width. The BW and Gaussian(denoted
by G) forms of FksEd are,

Fk:BWsEd =
1

2p

Gk

sE − Ekd2 + Gk
2/4

,Fk:GsEd

=
1

Î2psk

exp −
sE − Ekd2

2sk
2 , s3d

where Ek=kkuHukl. With p=e−`
Ep

skd
FksEddE, the spreading

width Gk=E3/4
skd −E1/4

skd . Similarly the variance ofFk is sk
2

=kkuH2ukl−skkuHukld2. Both the spreading widthGk of the
BW andsk of the Gaussian strength functions are essentially
independent ofk provided one considersFksEd’s with Ek

energies not too far away from the center of the density of
the ukl states[1,3,14]. Similarly, the energiesE’s (of H) and
Ek’s will have the same centroid. Moreover, just as the state
densityrHsEd, the Ek’s density, denoted byrhsEkd with the
meaning of the effective one-bodyh explained below, is also
a Gaussian. These results are used throughout this paper and
without loss of generality the centroids ofE’s and Ek’s are
set equal to zero. As it is discussed in detail in[3], rhsEkd is
generated byh which is hs1d plus a small additional term
arising from Vs2d. Therefore the width ofrhsEkd is essen-
tially generated byhs1d and thesk’s are generated byVs2d.
Before proceeding further it should be mentioned that the
strength functions are basis dependent and one can define
strength functions in theVs2d basis also. We will turn to this
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question when discussing the duality transformation in Sec.
V.

For the BW to Gaussian transition we make the following
ansatz forFksEd:

Fk:BW−GsE:a,bddE=
sabda−s1/2dGsad

ÎpGSa −
1

2
D

dE

fsE − Ekd2 + abga ,

a ù 1. s4d

In Eq. (4) theGsd areG-functions. The parametersa andb in
(4) are in generalk dependent and change withl. The
Fk:BW−G in (4) gives BW for a=1 and Gaussian fora→`
(this can be easily checked using Stirling’s approximation).
As required, it is normalized to unity for any positive value
of the continuous parametera. For 2a−1 an integer,Fk:BW−G
gives the so calledStudent’s t-distribution[29], which is well
known in statistics. In particular, theStudent’sdistribution
fsxd with a parametern given in Table 5.7 of[29] reduces to
(4) with the changea=sn+1d /2, n a positive integer, andx
→Î2n / sn+1dsE−Ekd /Îb. Note that the construction of
Fk:BW−G in Eq. (4) is similar in spirit to the Brody distribu-
tion, interpolating between the Poisson and Wigner-Dyson
distributions for nearest neighbor spacing distribution
(NNSD) [2]. Also, just as some groups use for the NNSD a
linear combination of Poisson and Wigner forms multiplied
by x ands1−xd, respectively, withx being the mixing param-
eter, it is possible to usemFk:BWsEd+s1−mdFk:GsEd for the
BW to Gaussian transition withm s0ømø1d being the mix-
ing parameter. This simple form is not explored in this paper
as it is unlikely that a theory for strength functions for
EGOEs1+2d will give this form.

In Fk:BW−GsE:a ,bd, the parametera is sensitive to shape
changes, while the parameterb supplies the energy scale
over whichFk:BW−GsE:a ,bd extends. Since we focus on the
shape transformations,a is the significant parameter. Firstly,
it is easy to see thatFk:BW−GsE:a ,bd is an even function of
E−Ek, so that all of its finite odd cumulants vanish(strictly
speaking, the centroid isEk only for a.1; see Ref.[29]).
The variancesk

2 of Fk:BW−G, defined only fora.3/2, is

sk
2 = S a

2a − 3
Db s5d

and it is useful to recall thatsk
2<l2sVs2d

2 independent ofk
[3]. Fora.3/2 one can use(5) to fix b while for aø3/2, it
is the spreading widthGk (this is well defined for alla val-
ues) that is useful for fixing theb value. There is no simple
expression forGk as a function ofa andb but using(4) this
can be calculated numerically. Just as Eq.(5), the excess
parameter (also known as Kurtosis) of Fk:BW−G is g2
=6/s2a−5d for a.5/2. However this expression is not use-
ful in practice; finite range of the spectrum causes large de-
viations for a<2–8. Therefore it is more useful(in fitting
Eq. (4)) to considerg2 with the spectrum ranging say from
−a to +a. Then Eq.(4), with proper normalization gives,

g2sa:a,bd =
9

5

2F1S5

2
,a;

7

2
;− h2D2F1S1

2
,a;

3

2
;− h2D

F2F1S3

2
,a;

5

2
;− h2DG2 − 3,

s6d

whereh2=sa2/abd, and2F1 a hypergeometric function.
In testing Eq.(4) and also in the applications given ahead

in Secs. IV and V we consider the average strength function,
hereafter calledFsEd, obtained by averagingFksEd over an
interval, much smaller than the width of theEk’s spectrum,
aroundEk=0 (i.e., around theEk’s centroid). The spreading
width of FsEd is denoted byG [this should not be confused
with the G-functions in Eq.(4)] and the variance ofFsEd by
s̄2. In Fig. 1(a) the results of EGOEs1+2d for FsEd are com-
pared, for them=6, N=12 system, with the best fitFk:BW−G
[Eq. (4) with Ek=0)] for various values ofl. In the fits, for
the cases withlù0.1 (for thesea.1.6), the b values are
fixed using Eq.(5) and thes̄ of FsEd. Similarly, the spread-
ing width G sb,G2/4d is used for eliminatingb for the
specific case ofl=0.06 (herea=1.2). In the fits, also im-
posed is the condition that the value ofg2 calculated from
Eq. (6) over the spectrum range should be close to the nu-
merical EGOEs1+2d values. As it is seen from Fig. 1, the fits
are excellent over a wide range ofl values; in the calcula-
tions onlylù0.06 are considered(for the system considered
in Fig. 1, lc,0.06). Variation of the deduceda values with
l is shown in Fig. 2. The parametera rises slowly up tolF
(note thatlF,0.2 for the EGOEs1+2d system used in Fig. 1
[3]) and then it starts rising sharply withl. Finally the a
values start saturating afterl.l0=0.3 (the saturation is ar-
tificial as the determination ofa for l@l0 is difficult and
here FsEd will be very close to Gaussian). The criteriaa
,4 andg2,1 appear to definelF. Figure 2 shows that the
BW to Gaussian transition is a sharp transition and therefore
studies in BW and Gaussian regimes can be carried out in-
dependently, to a good approximation, as it is done in many
papers before.

Now we will apply Fk:BW−G to study PR andSinfo in the
region intermediate to BW and Gaussian forms.

III. PARTICIPATION RATIO AND INFORMATION
ENTROPY IN THE BW TO GAUSSIAN TRANSITION

REGION

Two important measures of the complexity of eigenstates
of interacting systems are the participation ratio and informa-
tion entropy; see the reviews by Izrailev[30] and Zelevinsky
et al. [31]. As in the previous section, we expand the Hamil-
tonian eigenstates in the noninteracting mean-field basis as
uEl=ok Ck

Eukl. Thenj2sEd (i.e., PR) andSinfosEd are,

j2sEd = Ho
k

uCk
Eu4J−1

, s7ad
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SinfosEd = − o
k

uCk
Eu2lnuCk

Eu2. s7bd

The subscript 2 denotes thatj2 is the second Rényi entropy
[32]. Qualitatively,j2 counts the number ofhuklj-basis states
necessary to construct one typicaluEl-state, and is thus often
referred to as the Number of Principal Components(NPC)
[3,31]. Obviously, bothj2 andSinfo are basis dependent, and
could as well be defined starting from another expansion.
Equation(7) gives their expression with respect to thehs1d
basis and consequently,j2 and Sinfo give measures of the
spreading of eigenstates over the noninteracting basis as the
many-body interaction is made stronger and stronger. In Sec.
V, we will deal with these measures defined with respect to
the Vs2d basis. As discussed in detail in Ref.[3], for l.lc,
one can writej2 andSinfo in terms of the strength functions
FksEd,

hj2sEd/j2
GOEj−1 =

1

frHsEdg2E
−`

`

dEkr
hsEkdfFksEdg2,

s8ad

SinfosEd − SGOE
info = −

1

rHsEdE−`

`

dEkr
hsEkdFksEdln

FksEd
rHsEd

.

s8bd

As it is well known, the GOE values forj2 andSinfo are,

j2
GOE= d/3, expsSGOE

info d = 0.48d. s9d

Substituting the interpolatingFk:BW−GsEd for FksEd in Eqs.
(8a) and (8b), one can studyj2 andSinfo as a function ofl.
Before going further it is important to consider the correla-
tion coefficientz that characterizes these measures. Forj2
andSinfo in hs1d sl=0d basis,z;z0. Given the dimensiond,
basis statesukl and theEk energies for am particle system,
sz0

smdd2 is defined by(see[3]),

sz0
smdd2 =

s0
2smd

sH
2 smd

,

s0
2smd = d−1o

k

sEk − e0d2; e0 = d−1o
k

Ek,

FIG. 1. Strength functionsFsEd for a 20 member EGOEs1+2d for various values of the interaction strengthl in hHj=hs1d+lhVs2dj for
a system of 6 fermions in 12 single particle states; the matrix dimension is 924. The single particle energies used in the calculations are

ei =si +1/id , i =1,2, . . . ,12just as in Ref.[1]. In the figuresFsEd is plotted againstÊ=sE−ed /s wheree is the spectrum centroid ands is the
width. The histograms are EGOEs1+2d results and the continuous curves are the best fitFk:BW−GsEd from Eq.(4) with Ek=0. In constructing

the strength functions,uCk
Eu2 are summed over the basis statesukl in the energy windowsÊk=0d± D̂ and then the ensemble averagedFsÊd vs

Ê is constructed as a histogram; the value ofD̂ is chosen to be 0.05 forl=0.06 and beyond thisD̂=0.1. Note thatÊk=sEk−ed /s and, as
stated after Eq.(3), here and in all the other calculations,e is set equal to zero. Similar results are also obtained for thesm=7,N=14d system.

ANGOM, GHOSH, AND KOTA PHYSICAL REVIEW E70, 016209(2004)

016209-4



sH
2 smd = d−1 o

kÞk8

ukkuHuk8lu2 + s0
2smd. s10d

In practice, a good approximation to Eq.(10) is

sz0
smdd2 =

sh
2smd

sh
2smd + l2sV

2smd
. s11d

Equation(11) is obtained by recognizing thats0
2 will be very

close to sh
2 and sH

2 is essentiallysh
2+l2sV

2 (note that s̄2

=l2sV
2). In fact these results are valid in the dilute limitsm

→` ,N→` ,m/N→0d and hereh and V are orthogonal.
Even away from the dilute limit they remain to be good
approximations(see Fig. 3 ahead for a test). Propagation
formulas[1] for sh

2smd andsV
2smd are

sh
2smd =

msN − md
sN − 1d

sh
2s1d = f2D2, s12ad

l2sV
2smd =

msm− 1dsN − mdsN − m− 1dNsN − 1d
sN − 2dsN − 3d

l2

4
= g2l2.

s12bd

It is possible to writesh
2s1d, appearing in(12a), in terms of

D2 and for example for a uniform single particle spectrum,

sh
2s1d = sN + 1dsN − 1d

D2

12
. s13d

The f andg in (12a) and (12b), respectively, defined by the
second equalities in these equations, are used in Sec. V. As
shown in Fig. 3, for them=6,N=12 system, results of the
formulas (11) and (12) agree very well with numerical
EGOEs1+2d values[obtained via(10)] for z0.

SubstitutingFk:BW−GsEd for FksEd in Eqs. (8a) and (8b),
assuming that the parametersa and b to be k independent,

using Eq.(5) to eliminateb and simplifying all the variances
that enter into Eqs.(8a) and (8b) to z2 using Eq.(11), it is
seen that the integrals in(8a) and (8b) will reduce to inte-
grals with no other parameters excepta and z. Now the
integral in Eq. (8a) for j2 can be further simplified for
E=0[for otherE’s one has to numerically evaluate the inte-
gral in Eq.(8a)] and this gives(for a.3/2),

j2sE = 0d/j2
GOE

= 5Î 2

s2a − 3d
G2sad

G2Sa −
1

2
D

1
Îz2s1 − z2d

US1

2
,
3

2

− 2a,
s2a − 3ds1 − z2d

2z2 D6
−1

, s14d

where Us–– –d is hypergeometric-U function[33]. For a
ø3/2 a compact formula could not be derived but one can
use(8a) for numerical evaluations. Similarly, in the case of
SinfosE=0d a simple formula like Eq.(14) could not be ob-
tained for anya but once again here one can use(8b) for
numerical evaluations. In the limita→`, Eqs.(8a) and(8b)
can be simplified, for anyE, to give the Gaussian limit for-
mulas derived in[3],

j2sEd/j2
GOE= Î1 − z4expS−

z2Ê2

1 + z2D , s15ad

expfSinfosEd − SGOE
info g = Î1 − z2expS z2

2
DexpS−

z2Ê2

2
D .

s15bd

FIG. 2. Forlù0.08,a vs l obtained by fitting theFsEd in hs1d
basis to the interpolating formFk:BW−G given by Eq.(4) with Ek

=0. Results are shown for the EGOEs1+2d system used in Fig. 1.
The filled circles give the best fita values and the continuous curve,
given bya=24/fexp−s40sl−l0dd+1g+2 with l0=0.29, guides the
eye. It is curious to note thatl0 is close told, the duality point
discussed in Sec. V. Similar results are also obtained for thesm
=7,N=14d system.

FIG. 3. Square of the correlation coefficientz0 vs l for the
EGOEs1+2d system used in Fig. 1. Theoretical results(continuous
curve) given by Eqs.(11) and(12) are compared with the numerical
EGOEs1+2d results(open circles).
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In Fig. 4, thej2sE=0d results, from(14) for lù0.08 and
from (8a) for l=0.06, are compared with numerical
EGOEs1+2d calculations for them=6,N=12 system. The
agreement between theory and numerical calculations is
good uptol,0.06. In these calculations thea-values are
read off from Fig. 2 andz2 from Fig. 3. Comparing with the
Gaussian domain results given by(15a), it is seen that they
are good forl.lF as expected; these results again confirm
thatlF,0.2 for them=6,N=12 system. Forl,lF, as here
the BW structure is more dominant, there will be more lo-
calization and hencej2 decreases fast asl is decreasing and
this is seen in Fig. 4. Finallyj2 will approach zero forl
→0. The results based on(8a) will not extend to the region
l&lc as here the GOE assumptions used in deriving these
equations(see[3]) will fail. Finally, for SinfosE=0d the re-
sults obtained using(8b) are similar to those shown in Fig. 4.
This is not surprising as in many numerical calculations(in-
cluding the present calculations) it is seen thatSinfosEd
, lnsj2sEdd and therefore only their difference can capture
the information not contained in the bulk ofSinfo or PR. With
this clue, recently it is argued[32] that the structural entropy
SstrsEd=SinfosEd−lnfj2sEdg is an important measure of com-
plexity [in addition to SinfosEd or j2sEd] in eigenfunctions.
More importantlySstr is free of divergences associated with
Sinfo and PR. For example, expsSinfod andj2 for GOE, as seen
from Eq. (9), diverge as the matrix dimensiond→`. For
interacting particle systems it is observed thatSstrsE=0d vs l
(or the disorder in the Anderson model[32]) exhibits a peak.
It is then of interest to examineSstr in terms of the results
given in Sec. II.

For smalll, one can estimateSstr in the BW domain using
kuCk

Eu2l=Fk:BWsEdDm, whereDm gives the many-body level
spacing. Inserting this into Eqs.(7a) and (7b) and replacing
the sums by integrals overEk one gets forE=0,

SstrsE = 0d =
1

p
E

−tan a

tan a

de
lns1 + e2d

1 + e2 + lnF2a + sin 2a

2p
G

+ lnF pG

2Dm
GS2a

p
− 1D . s16d

In (16), a=arctans2B/Gd where 2B is the m-particle spec-
trum span andG~l2 is the BW spreading width. Equation
(16) gives the upper limit forSstrs0d to be ln 2s,0.7d and this
follows by lettingB/G→` (thena→p /2). Similarly in the
Gaussian domain, using(15a) and (15b), one has

SstrsE = 0d = lns1.44d + 1
2fz2 − lns1 + z2dg. s17d

It should be noted thatSstr
GOE. lns1.44d independent ofE. An

interesting observation(though its significance is not clear)
is that forl=0 (thenz=1) theSstr is sum ofSstr

GOE andSstr for
a Gaussian function; as shown in[32], for a Gaussian func-
tion Sstr=

1
2s1−ln 2d. Equation(17) shows that, asz=0 for

l→`, Sstr approaches the GOE values0.3689d for very large
l. Except for the formulas(16) and (17), which are derived
in the two limiting situations, no analytical results could be
derived using the interpolating form(4). However, numerical
calculations give some insight. Figure 5 shows EGOEs1
+2d results for them=6,N=12 system forSstrsE=0d vs l in
thehs1d basis and their comparison with the results from(8a)
and (8b), whereFk:BW−G given by (4) is used witha and z
values taken from Figs. 2 and 3, respectively. TheSstr is well
described forlù0.1. Comparing with Eqs.(16) and(17), it
is seen that the Gaussian domain formula(17) describes the
results forlùlF while the BW result(16) describes only the
trends forl between 0.1 andlF [note that Eq.(16) gives the
maximum possible value forSstr to be 0.7]. More impor-
tantly, as seen from Fig. 5 and also from Fig. 4 of[20], Sstr
exhibits a peak around al value not far fromlc marker and
here the level fluctuations will have a Poisson component.

FIG. 4. Participation ratio j2sE=0d /j2
GOE vs l for the

EGOEs1+2d system used in Fig. 1. Theoretical results given by Eq.
(14) (open squares) are compared with the EGOEs1+2d results
(filled circles). For comparison, the Gaussian domain result(dashed
curve) from Eq. (15a) is also shown.

FIG. 5. Structural entropySstrsE=0d vs l for the EGOEs1+2d
system used in Fig. 1. Theoretical results calculated using Eqs.(8a),
(8b), and (4) (open squares) are compared with the EGOEs1+2d
results(filled circles). For comparison, the Gaussian domain result
(dashed curve) from (17) is also shown. For guiding the eye, the
filled circles are joined by continuous lines. See text for further
details.
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Thus it is plausible that the peak arises due to large spectral
(and strength) fluctuations. A good theory forSstr generating
the observed peak is at present not available.

IV. BW TO GAUSSIAN TRANSITION IN NEUTRAL
ATOMS CeI TO SmI

Atoms along the lanthanide period are expected to exhibit
BW to Gaussian transition in strength functions as the num-
berm of active valence electrons increases. It is known from
the analysis of CeI by Flambaumet al. [6] and PrI by Cum-
mingset al. [34] that theFsEd of these atoms with 4 and 5
valance electrons, respectively, are close to BW while those
of SmI with 8 valance electrons, as shown in[7], are close to
Gaussian. In between are the atoms NdI and PmI with 6 and
7 valence electrons, respectively. It is useful to recall here the
relation lF~1/Îm and this shows that with fixedH, there
will be BW to Gaussian transition asm is increasing. In
order to verify this transition and thus provide a first realistic
(atomic structure) application of Eq.(4), we have calculated
the strength functionsFsEd for all the five atoms using the
same method. Before turning to the results, first the method
used in atomic structure calculations is briefly discussed.

The ground state configurations of Ce, Pr, Nd, Pm, and
Sm are 4f5d6s2s1G4d, 4f36s2s4I9/2d, 4f46s2s5I4d,
4f56s2s6H5/2d, and 4f66s2s7F0d, respectively. Coupling of the
high angular momentum 5d and 4f electrons produce several
configurations with strong configuration mixing. Previous
work on lanthanide series[35] and Sm I[36] in particular
established that an appropriate method to calculate atomic
orbitals is the multiconfiguration Dirac-Fock method
(MCDF). Details of this method and its implementation are
described in[37,38]. In the present study, for a given atom, a
series of MCDF calculations are carried out to generate
single electron basis set consisting ofs1−6ds1/2, s2−6dp1/2,
s2−6dp3/2, s3−5dd3/2, 4f5/2, and 4f7/2 orbitals. Then the basic
many-electron wave-functions, called the configuration state
functions (CSFs) ugkPJMl, where P, J, and M are parity,
total angular momentum, and magnetic quantum numbers
respectively andgk are the additional quantum numbers
needed to define each of the CSFs uniquely, are constructed
for a givenJ andP. The CFS’s basis in the present calcula-
tions consists of single and double excitations from a refer-
ence configuration 4f l5dm6s2 to 5d, 6p, and 4f shells, where
l andm are the occupancies of the shells. Finally, the atomic
(Dirac-Coulomb) Hamiltonian is diagonalized in the CSF’s
space of specificJ and P. This sequence of calculations is
repeated for each of the five atoms. Details ofJP, the refer-
ence configuration considered and the number of CSFs gen-
erated for each atom are given in Table I. Note that the parity
sPd is chosen to be same as that of the ground state andJ to
be 4 for even and 9/2 for odd cases. For the analysis of
strength functions, we choose the CSFs(they are the basis
statesukl in Sec. II) which have close to uniform separation.
For example, in Sm only 6500 of the 7325 CSFs generated
are considered, the first 200 and last 625 CSFs are excluded.
Then, the strength functionsFsEd averaged over 3% of the
Ek’s around their center are constructed for CeI to SmI and
compared with Eq.(4).

Figure 6 shows that theFk:BW−GsEd (Eq. (4) with Ek=0)
gives excellent description of the calculatedFsEd’s. In apply-
ing Eq.(4), b is eliminated using Eq.(5) and then the best fit
a values are deduced. The BW to Gaussian transition is
clearly seen in Fig. 6 witha changing from 1.85 to 14 as we
go from CeI to SmI. The calculatedg2 values are also con-
sistent with this transition as they change from 6.44 to 0.46.
Comparing with Fig. 1, CeI and PrI atoms are close tol
,0.1–0.15 cases[FsEd is close to BW], NdI and PmI are
close tol,0.2–0.25 casesfFsEd is intermediate to BW and
Gaussian] and SmI is close tol,0.3 casefFsEd is close to
Gaussian] of them=6,N=12 EGOE example. Thus NdI and
PmI (calculations for these atoms are reported for the first
time in this paper) haveFsEd intermediate to BW and Gauss-
ian forms. For further confirming the BW to Gaussian tran-
sition, j2sE=0d /j2

GOE values are calculated using Eq.(14)
and thea values given in Fig. 6(used also are the calculated
z values). They change from 0.21 to 0.6 for CeI to SmI and
they are close toj2sE=0d /j2

GOE’s generated by the calculated
atomic eigenstates. However there are large fluctuations in
j2sEd, as the atomic calculations produce in general, for
many states, more localization than expected from EGOEs1
+2d; if we averagej2sEd in the neighborhood ofE=0, then
the calculated values are,20% –30% smaller than the val-
ues given by Eq.(14). This is already seen in Ce I and PrI in
[34] and SmI in[7]. The present calculations confirm this to
be a generic behavior. Modifications of EGOEs1+2d for in-
corporating this property need to be studied but this is for
future. Here it suffices to conclude that, from the results in
Fig. 6, CeI to SmI exhibit BW to Gaussian transition inFsEd.

V. DUALITY BETWEEN WEAK AND STRONG MIXING
LIMITS

For the HamiltonianH=hs1d+lVs2d two asymptotic
natural basis emerge, thel=0 basis defined byh and thel
=` basis defined byV. The discussions in Secs. II and III are
concerned with strength functions, PR andSinfo in the l=0
basis only. Here we will extend this discussion to thel=`
basis and focus on the existence of a duality transformation
between the two basis. Recently Jacquod and VargasJVd
[20] showed that aduality point ld exists where all the sta-
tistical wave function properties in these two basis coincide,
and that the wave function properties in the noninteracting

TABLE I. Details of the angular momentum, the reference con-
figuration considered, and the number of CSFs generated for each
of the atoms. The numbers within parentheses are the number of
CSFs chosen for the final calculations.

Element JP Ref. Config. Number of CSFs

Ce 4− 4f5d6s2 373 s308d
Pr 9/2− 4f36s2 1378s1278d
Nd 4+ 4f46s2 2200s2000d
Pm 9/2− 4f56s2 4378s4178d
Sm 4+ 4f66s2 7325s6500d
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sl=0d basis are related to those in thel=` (fully interact-
ing) basis by the duality transformationl↔ld

2/l. An ambi-
guity in JV results lied with the fact that the existence and
scaling of the duality pointld were derived within the BW
approximation forFsEd, while ld explicitly lies outside the
BW regime. We therefore extend those theoretical arguments

by similar ones in the Gaussian approximation, but first let us
recall the JV results.

In the noninteractingsl=0d basis, the spreading width
Gs0d of FsEd can be estimated using the Golden Rule. For
this, first one has to realize that there are, besides the one-
body spacingD, two important energy scales[16]: the mean
spacing between states directly coupled by the two-body in-
teractionDc

s0d=B2
s0d /K<4D /Nm2 and the average spacing be-

tween them-particle statesDm
s0d=Bm

s0d /d, whereBm
s0d<ÎmND

is the m-particle spectrum width forl→0 [note thatBm
s0d

,shsmd with shsmd given by(12a) and(13)]. This estimate
slightly differs from that of JV where theBm

s0d was approxi-
mated by them particle spectrum span. Then, the golden rule
givesGs0d~l2/Dc

s0d,l2Nm2/D. With this, in the dilute limit
sm!Nd, the PR in the l=0 basis is j2

s0d=Gs0d /Dm
s0d

~l2m3/2d/D2. This result differs from the JV estimate given
in [20] by the factorm3/2 instead ofm. As is the case forGs0d,
the Golden Rule also gives a good estimate for the widthGs`d

of the FsEd expressed in thel=` basis. Following JV, it is
seen thatGs`d,msN−mdD2/l and the PR in thel=` basis
is j2

s`d=Gs`d /Dm
s`d~ sD /ld2d. The duality point is defined by

the conditionj2
s0dsldd=j2

s`dsldd and therefore,

ld ~ D/m3/8. s18d

This result [39] is in better agreement with the numerical
data presented by JV. They found thatld,1/mn with n
P f0.3,0.5g (one has to keep in mind that most data are not in
the dilute limit and thatn is extracted from a restricted range
of variation ofm). The previous JV estimate isld~D /m1/4.

FIG. 7. expfSinfosEd−SGOE
info g in Vs2d basis(filled circles) for four

different l values for the EGOEs1+2d system used in Fig. 1. The
continuous curves are from Eq.(15b) with z=z`.

FIG. 6. Strength functionsFsEd for CeI to SmI. Histograms are
calculated strength functions and the smooth curves are the best fit
Fk:BW−GsEd with Ek=0. Also given in the figures are the calculated
g1 (skewness) andg2 (excess) values and the deduced values, from
the best fits, ofa characterizingFk:BW−GsEd with Ek=0. In the fig-
ure, e and s are the spectral centroids and widths. See text for
further details.
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As stated in the beginning of this section,ld lies in the
Gaussian domain, i.e.,ld@lF. Therefore we will now derive
an estimate forld using PR andSinfo in this region. In the
Gaussian domain, just as Eqs.(15a) and (15b) describe PR
andSinfo, respectively, in thehs1d basis by substitutingz0 for
z where

z0sld = sh/Îsh
2 + l2sV

2 = Îsf2D2d/sf2D2 + g2l2d, s19d

it is expected[by extending in a straight forward manner the
arguments in Ref.[3] wherehs1d basis is considered] that in
the Vs2d basis also the PR andSinfo will be given by (15a)
and (15b) but with z=z` where,

z`sld = lsV/Îsh
2 + l2sV

2 = Îsg2l2d/sf2D2 + g2l2d. s20d

The factorsf2 and g2 in Eqs. (19) and (20) are defined by
Eqs.(12) and(13). In Fig. 7 it is verified that Eq.(15b) with
z=z` indeed describes the numerical EGOEs1+2d results for
SinfosEd. Having demonstrated this, it is easily seen that the
obvious condition forSinfo and PR[alsoFsEd] to be same in
both hs1d andVs2d basis is

z0sldd = z`sldd ⇒ ld = uDf/gu, z2sldd = 0.5. s21d

Using Fig. 3 and the conditionz2sldd=0.5 gives for them
=6,N=12 example,ld=0.29. In the dilute limit, them de-
pendence ofld follows from Eqs.(12), (13), and(21),

ld , D/s3md1/2. s22d

Thus the Gaussian domain arguments given (in ld,1/mn)
to be 0.5 unlike the improved BW domain arguments which
gave 0.375[see Eq.(18)]. With ld defined, a much more
significant result that follows from Eqs.(19)–(21) is z`sld
=z0sld

2/ld and thus there is a duality in EGOEs1+2d, i.e., the
results inhs1d andVs2d basis are related to each other by the
duality transformationl→ld

2/l. As stated before, the same
transformation is also derived by JV but usingG and j2 in
the BW domain and this points-out to the general validity of
the duality transformation. Strictly speakingld does not lie
in the BW domain nor deep into the Gaussian domain. The
duality transformation is well tested in Fig. 8 forFsEd and in
Fig. 9 forSinfosEd. In these calculationsld=0.29. It should be
recognized that for theFsEd in Fig. 8, the variances arez0

2

andz`
2 in thehs1d andVs2d basis, respectively. In the case of

SinfosEd one sees(from Fig. 9) departures, forFsEd close to
Gaussian, in the region well away from the centroid ofE and
this could be because the tails ofFsEd display exponential
localization[15,28,40]. These disagreements are not seen in
[20] as in this work onlySinfosE=0d andj2sE=0d are studied.
It is useful to point-out that there appears to be a close rela-
tionship betweenld and thermodynamics of finite quantum
systems. Using the Gaussian domain formulas(see Ref.[21])
for the thermodynamic, information and single particle en-
tropies, it is easily verified that at and aroundld, all the three
entropies will be very close to each other; numerical verifi-
cation of this result is given in Ref.[21]. Therefore it is

FIG. 8. Strength functionsFsEd in the hs1d
and Vs2d basis for fourl values related by the
duality transformationl→ld

2/l. Results are for
the EGOEs1+2d system used in Fig. 1. Hereld

=0.29. Similar results for the BW spreading
widths are given in Ref. [20] for several
EGOEs1+2d systems withhs1d also chosen to be
random.
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possible to define the region aroundld as the “thermody-
namic region” for interacting particle systems as here differ-
ent definitions of thermodynamic quantities like entropy will
give same results; see Refs.[21,41].

VI. CONCLUSIONS

In this paper an attempt is made to bring completion to
the analytical(in BW and Gaussian domains) and numerical
investigations, initiated by a number of research groups, of
EGOEs1+2d random matrix model for finite interacting
quantum systems. Towards this end, a function describing
the BW to Gaussian transition in strength functions is iden-
tified [Eq. (4)] and it is used to study participation ratio and
information and structural entropy as a function of the inter-
action strength. Also it is shown, using Gaussian domain
results, that the duality pointld behaves more likeld

,1/Îm where m is number of fermions. Applications of
these results are given for the BW to Gaussian transition in
the series of neutral atoms CeI, PrI, NdI, PmI, and SmI. As
for EGOEs1+2d, what remains is a rigorous analytical treat-
ment of this random matrix model. This will give for ex-
ample a theory fora vs l (see Fig. 2), a theory forSinfo and
PR in thel&lc domain etc. Finally it is important to be
reminded that only recently rigorous analytical treatment has
started becoming available for the simpler EGOEs2d [26].

ACKNOWLEDGMENTS

Thanks are due to Ph. Jacquod for a careful reading of the
first draft of the paper and for making many suggestions for
improving it. The present work was initiated as a result of the
correspondence one of the authors(V.K.B.K.) have had with
Ph. Jacquod. Thanks are also due to Imre Varga for corre-
spondence in the initial stages of this work.

[1] V. K. B. Kota, Phys. Rep.347, 223 (2001).
[2] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey,

and S. S. M. Wong, Rev. Mod. Phys.53, 385 (1981).
[3] V. K. B. Kota and R. Sahu, Phys. Rev. E64, 016219(2001).
[4] K. K. Mon and J. B. French, Ann. Phys.(N.Y.) 95, 90 (1975).
[5] J. M. G. Gómez, K. Kar, V. K. B. Kota, J. Retamosa, and R.

Sahu, Phys. Rev. C64, 034305(2001); V. Velázquez and A. P.
Zuker, Phys. Rev. Lett.88, 072502(2002); M. Horoi, J. Kai-

ser, and V. Zelevinsky, Phys. Rev. C67, 054309(2003); V. K.
B. Kota, Ann. Phys.(N.Y.) 306, 58 (2003).

[6] V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and I. V.
Ponomarev, Physica D131, 205 (1999); V. V. Flambaum, A.
A. Gribakina, G. F. Gribakin, and C. Harabati, Phys. Rev. A
66, 012713(2002).

[7] Dilip Angom and V. K. B. Kota, Phys. Rev. A67, 052508
(2003).

FIG. 9. Same as Fig. 8 but for expfSinfosEd
−SGOE

info g. Similar results forj2 but only atE=0 are
given in Ref.[20].

ANGOM, GHOSH, AND KOTA PHYSICAL REVIEW E70, 016209(2004)

016209-10



[8] X. Leyronas, P. G. Silvestrov, and C. W. J. Beenakker, Phys.
Rev. Lett. 84, 3414(2000); Ph. Jacquod and A. D. Stone,ibid.
84, 3938(2000); Phys. Rev. B64, 214416(2001).

[9] Y. Alhassid, Ph. Jacquod, and A. Wobst, Phys. Rev. B61,
R13357 (2000); Physica E(Amsterdam) 9, 393 (2001); Y.
Alhassid and A. Wobst, Phys. Rev. B65, 041304(2002).

[10] T. Papenbrock, L. Kaplan, and G. F. Bertsch, Phys. Rev. B65,
235120(2002).

[11] M. Mézard, G. Parisi, and M. A. Virasoro,Spin Glass Theory
and Beyond(World Scientific, Singapore, 1987).

[12] B. Georgeot and D. L. Shepelyansky, Phys. Rev. E62, 3504
(2000); 62, 6366 (2000); G. Benenti, G. Casati, and D. L.
Shepelyansky, Eur. Phys. J. D17, 265(2001); V. V. Flambaum
and F. M. Izrailev, Phys. Rev. E64, 026124(2001).

[13] V. K. B. Kota and K. Kar, Phys. Rev. E65, 026130(2002).
[14] V. V. Flambaum, G. F. Gribakin, and F. M. Izrailev, Phys. Rev.

E 53, 5729(1996).
[15] V. V. Flambaum and F. M. Izrailev, Phys. Rev. E56, 5144

(1997).
[16] S. Åberg, Phys. Rev. Lett.64, 3119(1990).
[17] Ph. Jacquod and D. L. Shepelyansky, Phys. Rev. Lett.79,

1837 (1997).
[18] B. Georgeot and D. L. Shepelyansky, Phys. Rev. Lett.79,

4365 (1997).
[19] V. V. Flambaum and F. M. Izrailev, Phys. Rev. E61, 2539

(2000); V. K. B. Kota and R. Sahu, e-print nucl-th/0006079.
[20] Ph. Jacquod and I. Varga, Phys. Rev. Lett.89, 134101(2002).
[21] V. K. B. Kota and R. Sahu, Phys. Rev. E66, 037103(2002).
[22] M. L. Mehta, Random Matrices, 2nd ed. (Academic, New

York, 1991).
[23] A. Bohr and B. Mottelson,Nuclear Structure(Benjamin, New

York, 1969), Vol. 1.
[24] Ph. Jacquod and D. L. Shepelyansky, Phys. Rev. Lett.75,

3501 (1995).
[25] G. P. Berman, F. Borgonovi, F. M. Izrailev, and V. I. Tsifrinov-

ich, Phys. Rev. E65, 015204(R) (2001).
[26] L. Benet, T. Rupp, and H. A. Weidenmüller, Phys. Rev. Lett.

87, 010601(2001); Ann. Phys.(N.Y.) 292, 67 (2001); Z. Plu-
har and H. A. Weidenmüller,ibid. 297, 344 (2002).

[27] C. H. Lewenkopf and V. G. Zelevinsky, Nucl. Phys.569, 183c
(1994).

[28] N. Frazier, B. A. Brown, and V. Zelevinsky, Phys. Rev. C54,
1665 (1996).

[29] A. Stuart and J. K. Ord,Kendall’s Advanced Theory of Statis-
tics, 5th ed. of Vol. 1: Distribution Theory(Oxford University
Press, New York, 1987).

[30] F. M. Izrailev, Phys. Rep.196, 299 (1990).
[31] V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, Phys.

Rep. 276, 85 (1996).
[32] I. Varga and J. Pipek, Phys. Rev. E68, 026202(2003).
[33] Handbook of Mathematical Functions, NBS Applied Math-

ematics Series, edited by M. Abramowtiz and I. A. Stegun
(U.S. GPO, Washington, D.C., 1964), Vol. 55.

[34] A. Cummings, G. O’Sullivan, and D. M. Heffernan, J. Phys. B
34, 3407(2001).

[35] M. Sekiya, K. Narita, and H. Tatewaki, Phys. Rev. A63,
012503(2001).

[36] Angom Dilip, I. Endo, A. Fukumi, M. Linuma, T. Kondo, and
T. Takahasi, Eur. Phys. J. D14, 271 (2001).

[37] I. P. Grant and H. M. Quiney, inAdvances in Atomic and
Molecular Physics, edited by D. Bates and B. Bederson(Aca-
demic, New York, 1987), Vol 23, p. 37.

[38] F. Parpia, C. Fischer, and I. Grant, Comput. Phys. Commun.
94, 249 (1996).

[39] Ph. Jacquod(private communication, 2003).
[40] W. Wang, F. M. Izrailev, and G. Casati, Phys. Rev. E57, 323

(1998).
[41] M. Horoi, V. Zelevinsky, and B. A. Brown, Phys. Rev. Lett.

74, 5194(1995).

STRENGTH FUNCTIONS, ENTROPIES, AND DUALITY… PHYSICAL REVIEW E 70, 016209(2004)

016209-11


